HP41 OS 13-digit Math Routines.
 Scratching the surface 30 years later.

MS	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	XS	XP

becomes:

| MS | XS | XP |
| :---: | :---: | :---: | :---: |

| | M 1 | M 2 | M 3 | M 4 | M 5 | M 6 | M 7 | M 8 | M 9 | M 10 | M 11 | M 12 | M 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Ángel M. Martin.
February 2011

HP41 13-digit OS Routines. Scratching the surface..

This compilation, revision A.1.5
Copyright © 2010-2011 Ángel M. Martin

Published under the GNU software license agreement.

13-digit Math Routines within the 41 OS.

Intro.

The purpose of this mini-paper is to document the usage of some of the 13-digit math routines within the 41 OS - for extended precision in the calculations of functions in the SandMath and the 41 Z modules. It's not a comprehensive description of the routines, nor should it be seen as a complete overview of the 41 Math Rom (system ROM_1), which - I'm glad to say - still holds many secret chestnuts and undocumented treasures.

It's assumed that the reader is familiar with the "standard|" math routines in the OS, such as [AD2_10], [MP2_10], [LN10], etc. I'll make no attempt to explain those anything beyond a comparison point with the extended ones.

I'm not a computer science engineer; so pls. allow some imprecise rigor or unclear use of terms within the descriptions below - you've been warned!

The basics: Nibbles and digits.

The NUT CPU - a 30-year old classic by today's standards - uses 7-byte registers as main memory unit. Each byte has two nibbles, each nibble being 4 bits - which makes it a 56 -bit CPU, if that means anything these days.

Nibbles (or digits) are labeled from right to left as 0 to 13 , with nibble 0 holding the LSB. The typical assignment distribution of those fields is as follows:

- nibble 13 holds the sign of the mantissa, called the MS field. A zero denotes positive numbers, and 9 a negative number
- nibbles 12 to 3 hold the mantissa, called the M field and ranging from 0 to 9999999999
- nibble 3 holds the sign of the exponent, called the XS field - with zero positive and 9 negative exp.
- nibbles 1 and 0 (that is: byte 0) hold the exponent, called the XP field ranging from 0 to 99 . The combination of nibbles 2 to 0 is also called the $\mathrm{S} \& \mathrm{X}$ field.

Typically a number in the calculator is held in a single register, thus its precision is limited to 10 digits. This was good enough for 1980 standards for calculator design, but as algorithms get more complicated the numerical errors become more significant, rendering the system sub-optimal.

Yet the 41 OS math routines (in ROM1) were written with extended precision in mind. They employ two CPU registers to hold the numbers, extending the actual precision to 13 digits, as follows:

- first register holds MS and the S\&X,
- second register holds a 13-digit mantissa.

From this it's clear that the routines should then operate taking a dual-register definition for each one of the input arguments (one if MONADIC and two if DUAL), and conversely should exit leaving the final result in two registers as well.

But in fact, they're even better than that.
Considering that the initial input data and the final output result can only have a 10digit form, those routines must also accept 10 -digit inputs, and must produce 10 -digit outputs. No surprisingly they are indeed designed to accept input on either way, and to output the results in both ways. There's even a third hybrid form, with one operand in 13-digit form and another in 10 -digit form.

This allows intermediate operations to be done with 13-bit precision, which is good enough to achieve a 10-digit accuracy, without rounding errors or loss of resolution.

The important think to realize is that there is only ONE set of math routines, and not dual sets. The routines always operate on a dual-mode basis, and exit with dual results placed in both 10-digit form [in register C], and 13-digit form [in arithmetic registers A\&B].

Different entry points within the routines determine whether it's using the extended precision or not, just truncating the input values to 10 -digit forms. So even the standard [AD2_10] routine produces a 13-digit output in registers A\&B, even though most of the time this isn't taken advantage of and only the result placed in C is used.

So from now on we won't refer to either 10-digit or 13-digit routines anymore, as there's only one set - with a choice of manners to use them, depending on the syntax (entry points) and the richness of the data.

This also means the execution time is not longer when the 13-digit forms are used, thus there's no penalty in using them!

And besides that, to make things even more attractive, the code listings get simplified if the extended precision syntax is used - due to the way the routines have been written, and to the auxiliary routines used to facilitate repeated operations. So typically programs are shorter, saving vital bytes.

Those three reasons are surely good enough to justify the learning curve, won't you agree? So let's get to it, shall we...

Entry points and digit forms.

Clever as they were, the 41 OS programmers followed a nomenclature system to consistently label the different entry points for all routines in a common way, denoting the data form convention to use.

So a dual 10 -digit form always uses the " $2-10$ " string in their names, and the dual 13digit form uses " $2-13$ " - whereas the one-of-each hybrid uses " $1-10$ " as descriptor. All perfectly clear, and very helpful to get your bearings when navigating the MCODE listings.

Let's first review what we already knew:-

- A single 10-digit input for MONADIC functions is expected to be in Register C. This of course notwithstanding additional requirements, like also being in register N (as it’s done with [XFCT100],
- A dual 10-digit input for DUAL functions is expected to be in registers A for the first operand, and register C for the second. Ditto here w.r.t. additional requirements, like also using X/Y (like in [TOPOL] - this one probably the most complex routine in the OS alone!)

And here's the extension to the knowledge:

- A single 13-digit input for MONADIC functions is expected to be in the arithmetic registers $\mathrm{A} \& \mathrm{~B}$, as per the 13 -digit convention explained before. Examples are: [LN13], [SQR13], [EXP13].
- A dual 13-digit input for DUAL functions is expected to be in registers A\&B for the first operand, and registers C\&M for the second one. The order is especially important for the division routine, of course. Examples are [AD213] , [MP2-13] and [DV2-13] \& [X/Y13] (its reverse).
- A hybrid 10 - and 13-digit input for DUAL functions is expected to be in registers $\mathrm{A} \& \mathrm{~B}$ for the first operand (13-digit form following the extended convention), and in register C for the second operand (10-digit form following the standard convention). Examples are [AD1-10], [MP1-10] and [DV1-10].

Note that there aren't entry points for the reverse situation - operand 1 must be the 13-digit form

But wait, there's more. To further facilitate interoperability within all these routines, there are auxiliary ones that make the chain calculations almost as simple as if we were using an RPN stack. They are:

- [STSCR].- A routine to temporarily store a 13-digit result for later reuse, using scratch registers "Q" \&"+" - using a slightly modified convention due to the compromised usage of the "+" register. (Now we know why Q can’t be used in our MCODE so often!)
- [RCSCR].- Its trusty companion, a routine to restore the scratch registers into registers $\{C \& M\}$, so their content can be used as second operand by a DUAL function. (It takes care of the subtleties used in [STSCR] to reverse the convention in compatible way).
- [EXSCR].- The third one. A routine to exchange (swap) the contents of registers $\{A \& B\}$ with the scratch registers. Nothing like the versatility of a swap sometimes! Very useful in hybrid operations (10-digit \& 13-digit).

- [ADDONE], [SUBONE].- handy routines to add/subtract one (written ad-hoc in C) to/from the number held in registers $\{A \& B\}$, leaving the result also in $\{A \& B\}$. (Guess which native functions used these? Here's a hint: LNX +1 and E^X-1).
- [PI/2].- There's never enough number of decimal digits for an irrational number, won't you say? This routine gives 13 of them, and it's broadly used all along the Math ROM. Also note that it's placed in \{C\&M\}, ready to be used as 13 -digit second operand for addition, division, or multiplication steps.
- [LNC10], [LNC20], [LNC30], [LNC40], [LNC50], etc. As their names imply, routines to input the different values of the decimal log for those relevant values. (I'm a bit fuzzy here as I haven't really studied them all).
- [RTOD] and [DTOR].- Radians-to-Degrees and Degrees-to-Radians conversions. The result is also given in dual form, 13-digit in $\{A \& B\}$ plus $10-$ digit in C.
- [SQR13] .- 13-digit entry for the Square root routine. This is to be used with caution, as it doesn't always return correct results in chain calculations. If the mantissa result is zero, and it's to be followed by [ADD1-10] or [ADD2-13] then the mantissa sign field in B must be cleared prior to the addition step (as discovered by Jean-Marc Baillard).
- [TRGSET] and its multiple variants as per the flag settings, such as:
- CF 0, CF $1=[\mathrm{SIN}] ;$ - CF 0 , SF $1=[\mathrm{COS}] ;-$ SF 0 , SF $1=[\mathrm{TAN}]$

This is an interesting case, which may have an implementation defect or simply wasn't supposed to be used as intermediate step in calculations. The result is given in dual form as well, but the mantissa sign of the 13-digit form is not always correct - thus it's necessary to use A=C MS if the 13-digit form is to be used in subsequent calculations.

Let's see some examples of how to use these handy routines, comparing the syntax and code reduction as things get more powerful:-

Example 1.- Adding X and Z.

No frills here: each input is a 10-digit form so our old-reliable routines do the work and there's no additional value in using the 13-digit syntax, as we can't possibly "guess" the three missing digits!

READ 1(Z)
A=C ALL
READ 3(X)
[AD2-10]

Example 2. Calculate $(X+Z) * Y$

Here's a good chance to compare the " standard" vs. the "extended" syntax:

READ 1(Z)	READ 1(Z)	
A=C ALL	A=C ALL	
READ 3(X)	READ 3(X)	
[AD2-10]	[AD2-10]	-so far so good, but watch:
A=C ALL	READ 2(Y)	- uh? No need to obliterate A
READ 2(Y)	[MP1-10]	- an elegant way to finish.
[MP2-10]		

Note how we didn't need to save the intermediate result as 10 -digit form into A, as it was ALREADY saved into A\&B in 13-digit form. (so saving it would've destroyed it). Note also we saved one line whist gaining precision - a great deal.

Example 3. Calculate $(X+Z) *(Y+T)$

C=0 S\&X	C=0 S\&X	- only way to read the T register
RAMSLCT	RAMSLCT	- select bottom of chip0
READATA	READATA	- get first operand to C
A=C ALL	A=C ALL	- save it in A
READ 2(Y)	READ 2(Y)	- so far so good, but watch:
[AD2-10]	[AD2-10]	- first intermediate result:
N=C	[STSCR]	- saved in scratch
READ 1(Z)	READ 1(Z)	
A=C ALL	A=C ALL	
READ 3(X)	READ 3(X)	
[AD2-10]	[AD2-10]	- second intermediate result
A=C ALL	[RCSCR]	- the trusty companion
C=N	[MP2-13]	- full dual 13-digit glory at last
[MP2-10]		

In all fairness there's not such a code reduction here since the calls to [STSCR] and [RCSCR] required two bytes, whereas using N as scratch register is a single byte each way. Nevertheless the code clarity and enhanced accuracy are always there.

Example 4. Calculate $\operatorname{Ln}(X)+Y$

This one also benefits from the extended entry points syntax, as follows:

READ 3(X)	READ 3(X)	- get operand to C
CLRF 5	CLRF 5	- flag the proper logarithm to use
[LN10]	[LN10]	- result in both 10 \& 13-digit forms
A=C ALL	READ 2(Y)	- get second operand to C
READ 2(Y)	[AD1-10]	- hybrid multiplication to end

[AD2-10]

Example 5. Calculate $S Q R\left(X^{\wedge} 2+Y^{\wedge} 2\right)$ - (a.k.a the module.)

READ 3(X)	READ 3(X)	- get first operand to C
A=C ALL	A=C ALL	- duplicate in A
[MP2-10]	[MP2-10]	- square power in both 10/13-digit forms
N=C	[STSCR]	- 13-digit form saved in scratch
READ 2(Y)	READ 2(Y)	- get second operand to C
A=C ALL	A=C ALL	- duplicate in A
[MP2-10]	[MP2-10]	- - result in both 10/13-digit forms
A=C ALL	[RCSCR]	- recall first partial result to C\&M
C=N	[AD2-13]	- all-13-digit addition to end
[AD2-10]	[SQR13]	
[SQR10]		

Examples 6 \& 7.- Calculate $\left(X^{\wedge} 3\right)+1$ and $\left(1 / X^{\wedge} 2\right)-1$

Now without the corresponding comparisons, to expedite the illustration.-
a) Adding one

READ 3(X)
A=C ALL
[MP2-10]
READ 3(X)
[MP1-10]
[ADDONE]
b) Subtracting one

READ 3(X)
A=C ALL
[MP2-10]
[ON/X13]
[SUBONE]

The cube power is good example of combining the dual result into a chain calculation, in this case a hybrid product: economy of steps and calculation efficiency in one!

Example 8.- A couple of tricks to impress your friends.

Calculate $1 / \mathrm{X}^{\wedge}$ 2, and divide a 10 -digit number in N by its value (i.e. the reciprocal to [DV1-10]).

The first part is easy, let's do it in two different ways::
a) The sub-optimal way
b) the full-resolution way

READ 3(X)
READ 3(X)
[ON/X10]
[MP1-10]
[ON/X10]
[STSCR]
[RCSCR]
[MP2-13]

In the shorter implementation (on the left) we take advantage of the fact that the output from the $[1 / \mathrm{X}]$ routine is dual, as 13 -digit form in $\mathrm{A} \& B$ and also as a 10 -digit form in C. It's shorter but of course doesn't utilize the full information available and therefore the longer implementation (on the right) is recommended. If space is at a premium (as it eventually always is), the sub-optimal implementation is still better than a dual 10 -digit one - which also takes man extra code line.

The second part is a little trickier. Since there isn't an entry point to reflect this kind of hybrid scenario, we'll upgrade the 10 -digit value into a "fake" 13 -digit one in order to use the dual 13-digit division entry point, as follows:
[STSCR] - saves A\&B in scratch
$\mathrm{C}=\mathrm{N} \quad$ - puts the 10 -digit value to C
$\mathrm{A}=\mathrm{C}$ ALL \quad - puts its sign and $\mathrm{X} \& \mathrm{~S}$ in A
$\mathrm{B}=0$ ALL $\quad-$ a precaution to clear unused fields
C<>B M - puts the 10-digit mantissa in B
[EXSCR] - swaps the "fake" upgraded value and the genuine one
[RCSCR] - places the fake value into M\&C
[DV2-13] - performs the division our way: $\{A, B\}$ over $\{\mathrm{M}, \mathrm{C}\}$
Note that the last three steps can be replaced by this simplified way:

$[$ RCSCR $]$	- brings $\{\mathrm{Q},+\}$ to $\{\mathrm{M}, \mathrm{C}\}$
$[\mathrm{X} / \mathbf{Y} 13]$	- divides $\{\mathrm{M}, \mathrm{C}\}$ by $\{\mathrm{A}, \mathrm{B}\}$ instead!

MS	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	XS	XP
becomes:												
MS											XS	XP

Example 9- Get the gloves off and calculate PROD [X+k], for $k=1,2 \ldots 6$

Now in a more realistic vein, we'll approach this one using a more detailed listing description as follows:

Highlights here are the usage of [EXSCR] and the initial conversion of the input value to a "fake" 13-digit form, so that the same syntax could be used inside of the multiplication loop.

OF8	READ 3(X)	x
10E	$A=C$ ALL	A holds sign and S\&X
O2E	$B=0 \quad A L L$	clears B
07A	$A<>B M$	B holds 13-digit mant
089	? NCXQ	x
064	->1922	[STSCR]
0 E 0	SLCT Q	
15 C	$P T=6$	loop counter
OA9	?NC XQ	k
064	$\rightarrow 192 \mathrm{~A}$	EXSCRI
OAO	SLCTP	
001	? $\mathrm{NC} \times \mathrm{Q}$	$x+k+1$
060	->1800	[ADDONEI
OA9	?NC XQ	partial product
064	$\rightarrow 192 \mathrm{~A}$	[EXSCRI
001	?NC XQ	$x+k+1$
064	->1934	[RCSCR]
149	?NCXQ	$P P$ * $(x+k+1)$
060	->1852	MP2-131
0E0	SLCT Q	
3D4	$P T=P T-1$	loop 6 times
394	? $\mathrm{PT}=0$	
393	JNC-14d	
089	? NC XQ	PROD $(x+k) \mid k=0,1 . .6$
064	->1922	[STSCR]

The result of the loop is in 13-digit form, and therefore it's ready for further chain calculations as need may be.

Note that pointer P is used by both [ADDONE] and [MP2-13], thus we need to use Q instead for the loop counter.

A	MS, S\&X	ADDONE	A	MS, S\&X
B	M		B	M +1
A	MS, S\&X	SUBONE	A	MS S \& ${ }^{\text {P }}$
B	M	-	B	M - 1

Example 10.- Calculate $2 X+1168,92649479$

Notice of course that there are 12 digits in all required defining the value to add; therefore we'll have to use a dual 13 -digit form addition. All we need is converting the given number to a proper 13-digit form in order to be able to use all its 12 digits in the adding operation.

This entails not only writing its mantissa in C, but also its sign and S\&X into the M register to have a whole-defined value. Also let's not forget clearing the unused values in either register to avoid sporadic errors, so difficult to troubleshoot.

0F8	READ 3(X)	
10E	$A=C A L L$	
01D	?NC XQ	Adds normalized
060	->1807	[AD2 10]
04 E	$\mathrm{C}=0 \mathrm{ALL}$	
130	LDI S\&X	S\&X in M
003	CON: 3	
158	$\mathrm{M}=\mathrm{C}$ ALL	
Die:	Coma	
350	PT-	
D50:	LDCPPIT	
D50:	LDCPM	
190	CDPE $\mathrm{C}^{\text {a }}$	
2100	CDesem:	
2500	Q®ex	116892649479
D90:	LDePT	
$190:$	Q®emb	
100	CDCPM	
$250:$	LDCPM	
100	CDCex 4	
TD:	LD@PIT	
250:	LD@PT:9:	
031	?NC XQ	
060	$\rightarrow 180 \mathrm{C}$	[AD2-13]

MS	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	XS	XP
becomes:												
MS											XS	XP

Example 11.- Pi in the (13-digit) sky.

Working with π has two variants, depending on whether it's used as first or second operand. Remember that [PI/2] writes a 13 -digit version of π into the C\&M registers, so it's ready as a second argument but requires some work it it's to be used as first:-

For instance, to calculate the square root of 2π

Returned to both $\{\mathrm{A}, \mathrm{B}\}$ (13-digit form) and C (10-digit form).
And to divide a 13 -digit form number in $\{\mathrm{A}, \mathrm{B}\}$ by π

The 10 -digit form of π is obtained by rounding the mantissa to just 10 digits, and by truncating the S\&X field after the execution of [PI/2], as can be seen below in the well-known steps of the Coconut OS:

Header Header	$\begin{aligned} & 1240 \\ & 1241 \end{aligned}$	$\begin{aligned} & \hline 089 \\ & \text { "010 } \end{aligned}$	$\begin{aligned} & \hline \text { "I" } \\ & \text { "P" } \end{aligned}$	
PI	1242	2A0	SETDEC	
	1243	269	? NC XQ	
	1244	064	->199A	[PI/2]
	1245	1EE	$\mathrm{C}=\mathrm{C}+\mathrm{C}$ ALL	
	1246	23A	$\mathrm{C}=\mathrm{C}+1 \mathrm{M}$	rounding?
	1247	046	$\mathrm{C}=0 \mathrm{~S} \mathrm{\& X}$	truncation to 10-digit
LXEX	1229	OEE	B<>C ALL	
RCL	122E	18C	?FSET 11	
	122F	$3 B 5$? ${ }^{\text {P X }}$	
	1230	051	->14ED	[$\left.R^{\wedge} \mathrm{SUB}\right]$
HPRCL	1231	04E	C=0 ALL	
	1232	270	RAMSLCT	
	1233	OEE	B $<>C$ ALL	
	1234	0E8	WRIT 3(X)	
NFRPRL	1235	$3 B 9$?NC GO	
	1236	002	->OOEE	[NFRPR]

A real-life example: Hyperbolic functions at last.

Yes there are many unanswered questions in the universe, but certainly one of them is why, oh why, didn't HP-MotherGoose provide a decent set of hyperbolic functions in the (otherwise pathetic) MATH-PAC, and worse yet -adding insult to injury- how come that error wasn't corrected in the Advantage ROM?

For sure we'll never know, so it's about time we move on and get on with our lives whilst correcting this forever and ever. The first incarnation of these functions came in the AECROM module; I believe programmed by Nelson C. Crowle, a real genius behind such ground-breaking module - but it was also somehow limited to 10 -digit precision.

Here they are in all their 13-digit splendor at last.-

First the inverse functions, using the logarithm and square root routines.

Header	A084	08E	"N"	
Header	A085	009	"I"	
Header	A086	013	"S"	$\operatorname{Ln}\left[x+\operatorname{sqr}\left(x^{\wedge} 2+1\right)\right]$
Header	A087	001	" ${ }^{\prime \prime}$	
Header	A088	008	" $H^{\prime \prime}$	Ángel Martin
ASINH	A089	248	SETF 9	
ASINH	A08A	03B	JNC +07	
Header	A08B	093	"S"	
Header	A08C	OOF	"O"	
Header	A08D	003	"C"	$\operatorname{Ln}\left[x+\operatorname{sqr}\left(x^{\wedge} 2-1\right)\right]$
Header	A08E	001	" ${ }^{\prime \prime}$	
Header	A08F	008	" ${ }^{\text {" }}$	Ángel Martin
ACOSH	A090	244	CLRF 9	
ACOSH	A091	0F8	READ 3(X)	
ACOSH	A092	361	?NCXQ	(this includes SETDEC)
ACOSH	A093	050	->14D8	[CHK_NO_S]
ACOSH	A094	3C4	ST $=0$	in case it's called by XEQAX
ACOSH	A095	10E	$A=C A L L$	
ACOSH	A096	135	?NCXQ	$x^{\wedge} 2$
ACOSH	A097	060	->184D	[MP2-10]
ACOSH	A098	24C	?FSET 9	
ACOSH	A099	001	?CXQ	
ACOSH	A09A	061	->1800	[ADDONEI
ACOSH	A09B	24 C	?FSET 9	
ACOSH	A09C	009	? $N C X Q$	
ACOSH	A09D	060	->1802	[SUBONEI
ACOSH	A09E	305	?NC XQ	
ACOSH	A09F	060	$->18 \mathrm{C} 1$	[SQR13]
ACOSH	AOAO	0F8	READ 3(X)	
ACOSH	A0A1	025	?NCXQ	
ACOSH	A0A2	060	->1809	[AD1-10]
ACOSH	A0A3	121	?NC XQ	
ACOSH	A0A4	O6C	->1848	[LN13]
ACOSH	A0A5	331	?NC GO	Overflow, DropST, FillXL \& Exit
ACOSH	A0A6	002	$\rightarrow-00 \mathrm{CC}$	[NFRX] -----------

HP41 13-digit OS Routines. Scratching the surface...

Header	A0A7	08E	"N"	
Header	A0A8	001	"A"	
Header	A0A9	014	"T"	$1 / 2[\ln (1+x)-\ln (1-x)]$
Header	AOAA	001	"A"	
Header	A0AB	008	" ${ }^{\text {" }}$	Ángel Martin
ATANH	A0AC	0F8	READ 3(X)	
ATANH	A0AD	\|361	?NC XQ	(this includes SETDEC)
ATANH	AOAE	050	$\rightarrow 14 D 8$	[CHK NO S]
ATANH	A0AF	3C4	ST $=0$	in case it's called by XEQAX
ATANH	A0B0	$1 C D$?NC XQ	$\operatorname{Ln}(\mathrm{x}+1)$
ATANH	A0B1	06C	->1B73	[XLN1+X]
ATANH	A0B2	089	?NC XQ	$\operatorname{Ln}(x+1)$
ATANH	A0B3	064	->1922	STSCRI
ATANH	A0B4	0F8	READ 3(X)	
ATANH	A0B5	2BE	$C=-C-1 M S$	-x
ATANH	A0B6	605:	A 0 : Ab	
ATANH	A0B7	asci	PDS 12	Butdinoin A
ATANH	A0B8	162	ASATOPT	
ATANH	A0B9	010	? $N C X Q$	1-x
ATANH	A0BA	060	->1807	[AD2 $=10]$
ATANH	A0BB	3C4	ST $=0$	
ATANH	A0BC	121	? $N C X Q$	$\operatorname{Ln}(1-x)$
ATANH	A0BD	06C	$\rightarrow 1848$	[LN13]
ATANH	A0BE	2BE	$\mathrm{C}=-\mathrm{C}-1 \mathrm{MS}$	Sign change
ATANH	A0BF	11 E	$A=C$ MS	$-\operatorname{Ln}(1-x)$
ATANH	A0C0	OD1	?NCXQ	$\operatorname{Ln}(x+1)$
ATANH	A0C1	064	->1934	RCSSRI
ATANH	A0C2	031	?NC XQ	
ATANH	A0C3	060	$->180 \mathrm{C}$	[AD2-13]
ATANH	A0C4	04 E	$\mathrm{C}-\mathrm{A} A \mathrm{C}$	
ATANH	A0C5	-5cic	PTS 12	$B u n d s$ an mic
ATANH	A0C6	Q990	LQ@PTz	
ATANH	A0C7	269	? $N C X Q$	
ATANH	A0C8	060	->189A	[DV1-101
ATANH	A0C9	331	?NC GO	Overflow, DropST, FillXL \& Exit
ATANH	A0C10	002	$\rightarrow 00 \mathrm{CC}$	[$N F R X$]

We could've used a "fake" 13-digit format for X to have access to [ADDONE] and [SUBONE], but that wouldn't have added any more precision to the result.

Instead we used the [LN1 +X$]$ routine, which internally does the same thing anyway. And of course we'll utilize its 13-digit output!

On the other hand, we use the scratch registers to store the partial result $\operatorname{Ln}(1+\mathrm{x})$, so that it'll be fully used as 13-digit value in the final subtraction step.
$\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
$\operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right) ; x \geq 1$
$\operatorname{artanh} x=\frac{1}{2} \ln \frac{1+x}{1-x} ;|x|<1$

And here are the direct functions, a festival of exponential routines for you:-

Here the usage of a subroutine and CPU flag 11 is due to the fact that the LogGamma function (elsewhere in the SandMath) requires calculating the hyperbolic sine as intermediate step, otherwise it could have a shorter listing, and without using register B either.

$$
\sinh x=\frac{e^{x}-e^{-x}}{2} \quad \cosh x=\frac{e^{x}+e^{-x}}{2} \quad \tanh x=\frac{e^{2 x}-1}{e^{2 x}+1}
$$

Note also the common ending in these, suitable to yet further space savings just by using a JNC call to the appropriate section. We have however left it like that for clarity.

HP41 13-digit OS Routines. Scratching the surface..

Header	A0F4	08E	" N "	
Header	A0F5	001	" ${ }^{\prime \prime}$	$\operatorname{th}(x)=\left[e^{\wedge} 2 x-1\right] /\left[e^{\wedge} 2 x+1\right]$
Header	A0F6	014	"T"	
Header	A0F7	008	" $H^{\prime \prime}$	Ángel Martin
TANH	A0F8	0F8	READ 3(X)	
TANH	A0F9	361	? NCXQ	(this includes SETDEC)
TANH	AOFA	050	$->14 D 8$	[CHK NO S]
TANH	A0FB	10E	$A=C A L L$	
TANH	AOFC	01D	? $N C X Q$	$2 x$
TANH	A0FD	060	->1807	$[A D 2=10]$
TANH	A0FE	044	CLRF 4	
TANH	A0FF	035	?NC XQ	$\mathrm{e}^{\wedge} 2 x$
TANH	A100	068	$->1 A O D$	EXP13]
TANH	A101	089	?NCXQ	
TANH	A102	064	->1922	[STSCRI
TANH	A103	001	?NC XQ	$\mathrm{e}^{\wedge} 2 x+1$
TANH	A104	060	$->1800$	[ADDONE]
TANH	A105	OA9	? $N C X Q$	
TANH	A106	064	$->192 \mathrm{~A}$	[EXSCRI
TANH	A107	009	? NC XQ	$e^{\wedge} 2 x-1$
TANH	A108	060	$\rightarrow 1802$	[SUBONEI
TANH	A109	OD1	?NC XQ	$e^{\wedge} 2 x+1$
TANH	A10A	064	->1934	[RCSCRI
TANH	A10B	275	?NCXQ	$\left[e^{\wedge} 2 x-1\right] /\left[e^{\wedge} 2 x+1\right]$
TANH	A10C	060	->189D	[DV2-13]
TANH	A10D	331	?NC GO	Overflow, DropST, FillXL \& Exit
TANH	A10E	002	$\rightarrow-00 \mathrm{CC}$	[$N F R X$]

(*) Thanks to Thomas Klemm for pointing out a shorter way to calculate TANH using the scratch registers to store the exponential value.

Go ahead and set your machine in FIX 9, and bang the keyboard with esoteric inputs until you get blue in the face - do you find rounding errors somewhere? $\cdot ;$ - Hint: use www.wolframalpha.com as reference.

Putting it all together - Gamma for $\mathbf{x}>0$ as a 13-digit function.

Just to go with a bang, here's an example that consolidates many of the tips \& tricks seen before. We'll now write a routine to calculate the Gamma function of positive real numbers. We'll use the Lanczos approximation with 12-digit coefficients, as follows:

$$
\Gamma(z)=\frac{\sum_{n=0 . N} q_{n} z^{n}}{\prod_{n=0 . N}(z+n)}(z+5.5)^{z+0.5} e^{-(z+5.5)}
$$

$q_{0}=$	75122.6331530
$q_{1}=$	80916.6278952
$q_{2}=$	36308.295147
$q_{3}=$	8687.24529705
$q_{4}=$	1168.92649479
$q_{5}=$	83.8676043424
$q_{6}=$	2.5066282

Our function should give exact integer results for the natural numbers, since it's wellknown that $\Gamma(\mathrm{x})=(\mathrm{x}-1)$!. And here's the source code for such a feat:

The function uses a subroutine because gamma is also used in the Bessel functions code - implemented all in MCODE in the SandMath Module for integer and real orders, but as they say, that's another story...

We start by making sure we'll be within the 41 numeric range. Since we know that factorials for numbers greater than 69 will exceed it, we impose the restriction that x must be less than 71 . Nevertheless there's also a final overflow check at the very end.

Then we take on the product loop as seen in example \#9 before. Note the handy utilization of the scratch registers routines, as well as the "fake" upgrade of x to a 13digit form for convenience sake.

GAMM1	A2D2	0F8	READ 3(X)	x
GAMM1	A2D3	! 10 E	$A=C$ ALL	A holds sign and S\&X
GAMM1	A2D4	102E	$B=0 \quad A L L$	clears B
GAMM1	A2D5	107A	$A<>B M$	B holds 13-digit mant
GAMM1	A2D6	089	? NCXQ	x --------------------1-1-1-1-
GAMM1	A2D7	064	->1922	SSTSCRI
GAMM1	A2D8	0E0	SLCT Q	
GAMM1	A2D9	15 C	$P T=6$	loop counter
GAMM1	A2DA	OA9	? $\mathrm{NC} X Q$	k
GAMM1	A2DB	064	$\rightarrow 192 \mathrm{~A}$	[EXSCR]
GAMM1	A2DC	OAO	SLCTP	
GAMM1	A2DD	001	? NCX XQ	$x+k+1$
GAMM1	A2DE	060	->1800	[ADDONE]
GAMM1	A2DF	OA9	? NC XQ	partial product
GAMM1	A2E0	064	$\rightarrow 192 \mathrm{~A}$	[EXSCRI
GAMM1	A2E1	OD1	?NC XQ	$x+k+1$
GAMM1	A2E2	064	->1934	RCSCR1
GAMM1	A2E3	149	?NC XQ	$P P$ * $(x+k+1)$
GAMM1	A2E4	060	->1852	MP2-131
GAMM1	A2E5	0E0	SLCT Q	
GAMM1	A2E6	3D4	$P T=P T-1$	loop 6 times
GAMM1	A2E7	394	? $\mathrm{PT}=0$	
GAMM1	A2E8	393	JNC-14d	
GAMM1	A2E9	089	? $N C$ XQ	$\begin{aligned} & \begin{array}{l} P R O D(x+k) \mid k=0,1.6 \\ \text { ISTSCRI } \end{array} \end{aligned}$
GAMM1	A2EA	064	->1922	

Note also that we save the partial result in the scratch registers for later use.
Next comes the long but simple polynomial term, written using Honer's method to take advantage of its efficiency. Also partially seen in example \#10, here's where we use registers C\&M for the coefficients, as second operands for the multiplication. This is done to use all digits up, for extended precision in the calculations.

At the end of this we'll divide the partial result by the result from the productory loop, using the scratch registers again.

HP41 13-digit OS Routines. Scratching the surface..

HP41 13-digit OS Routines. Scratching the surface..

Yes this is long, but stick around a little longer, the best is yet to come... (after all programming is not always such an exciting ride).

HP41 13-digit OS Routines. Scratching the surface..

GAMM2	A356	\|04E	$\mathrm{C}=0 \mathrm{ALL}$	
GAMM2	A357	1130	LDI S\&X	S\&X in M
GAMM2	A358	1004	CON: 4	
GAMM2	A359	\|158	$\mathrm{M}=\mathrm{C}$ ALL	
GAMM2	A35A	O\%E	COALC	
GAMM2	A35B	350	P $\mathrm{S}^{2} 12$	buids of inc
GAMM2	A35C	210	CD@Pb	
GAMM2	A35D	0160	CD@o	
GAMM2	A35E	$250:$	ED@P	
GAMM2	A35F	059	ED@P	
GAMM2	A360	1990:	ED@D	809166278952
GAMM2	A361	$190:$	ED@ ${ }^{\text {a }}$	
GAMM2	A362	1090:	ED@P 2	
GAMM2	A363	1000	ED@P	
GAMM2	A364	2100	GD@P	
GAMM2	A365	2500	GD@Pb	
GAMM2	A366	1590:	GD@R	
GAMM2	A367	$090:$	ED@ ${ }^{\text {a }}$	
GAMM2	A368	031	? $\mathrm{NC} X Q$	
GAMM2	A369	060	$\rightarrow 180 \mathrm{C}$	[AD2-13]
GAMM2	A36A	0F8	READ 3(X)	
GAMM2	A36B	13 D	?NCXQ	
GAMM2	A36C	060	->184F	[MP1_10]
GAMM2	A36D	04E	$\mathrm{C}=0 \mathrm{ALL}$	
GAMM2	A36E	130	LDI S\&X	S\&X in M
GAMM2	A36F	004	CON: 4	
GAMM2	A370	,158	$\mathrm{M}=\mathrm{C}$ ALL	
GAMM2	A371	万64	COALE	
GAMM2	A372	356	PJ\% 12	buids dodoc
GAMM2	A373	100	GD@P	
GAMM2	A374		ED@P	
GAMM2	A375	050	ED@	
GAMM2	A376	090	ED@P	
GAMM2	A377	090	ED@P2	75122633153
GAMM2	A378	1900:	CD@0	
GAMM2	A379	1000	ED@D ${ }^{\text {a }}$	
GAMM2	A37A	1000	ED@P3	
GAMM2	A37B	1050	ED@P	
GAMM2	A37C	140	LD@R	
GAMM2	A37D	000	ED@ 3	
GAMM2	A37E	031	?NCXQ	SUM (qi***^i)
GAMM2	A37F	060	->180C	$[A D 2-13]$
GAMM3	A380	001	?NCXQ	$\operatorname{PROD}(\mathrm{x}+\mathrm{k}) \mid \mathrm{k}=0,1 . .6$
GAMM3	A381	064	->1934	[RCSCR]
GAMM3	A382	275	?NCXQ	
GAMM3	A383	060	->189D	[DV2-13]
GAMM3	A384	OAE	$A<>C A L L$	Store 13-digit form:
GAMM3	A385	128	WRIT 4(L)	L holds sign and S\&X
GAMM3	A386	OEE	$C<>B A L L$	N holds 13-digit mant
GAMM3	A387	070	$N=C A L L$	SUM/PROD

Lastly it comes the more involved phase, where we've used registers N and 4(L) as temporary scratch as well, since Q \& "+" are already taken. Note that we're using the exponential form of the power expression for simplicity:
$(x+5,5)^{\wedge}(x+0.5)^{*} \exp [-(x+5.5)]=\exp [(x+0,5) * \operatorname{Ln}(x+5.5)-(x+5.5)]$

GAMM4	A388	0F8	READ 3(X)	
GAMM4	A389	10E	$\mathrm{A}=\mathrm{C} A L L$	x
GAMM4	A38A	D4E	CoAL	
GAMM4	A38B	19 C	Pfoly	0,5:
GAMM4	A38C	150:	EQMJ	
GAMM4	A38D	010	? $N C X Q$	
GAMM4	A38E	060	$->1807$	[AD2 10]
GAMM4	A38F	089	?NCXQ	$x+0.5$
GAMM4	A390	064	->1922	[STSCR]
GAMM4	A391	04 ¢	COALE	
GAMM4	A392	350	$\mathrm{CH}=12$	5
GAMM4	A393	150	W@PJ	
GAMM4	A394	025	? $\mathrm{NC} X Q$	$x+5.5$
GAMM4	A395	060	->1809	[AD1 10]
GAMM4	A396	3C4	ST $=0$	
GAMM4	A397	121	? $\mathrm{NC} X Q$	$\operatorname{Ln}(x+5.5)$
GAMM4	A398	06C	$\rightarrow 1848$	[LN13]
GAMM4	A399	OD1	? $\mathrm{NC} X Q$	
GAMM4	A39A	064	->1934	RCSCRI
GAMM4	A39B	149	?NCXQ	$(x+0.5) * \operatorname{Ln}(x+5.5)$
GAMM4	A39C	060	->1852	MP2-131
GAMM4	A39D	OA9	?NCXQ	$x+0.5$
GAMM4	A39E	064	$\rightarrow 192 \mathrm{~A}$	[EXSCR]
GAMM4	A39F	04 :	COALC	
GAMM4	A3A0	350	de 12	5
GAMM4	A3A1	$150:$	(@P)	
GAMM4	A3A2	025	? $\mathrm{NC} X Q$	$x+5.5$
GAMM4	A3A3	060	->1809	[AD1 10]
GAMM4	A3A4	2BE	$\mathrm{C}=-\mathrm{C}-1 \mathrm{MS}$	
GAMM4	A3A5	11E	$A=C$ MS	-($x+5.5$)
GAMM4	A3A6	OD1	? $\mathrm{NC} X Q$	$(x+0.5) * \operatorname{Ln}(x+5.5)$
GAMM4	A3A7	064	->1934	RCSSCR]
GAMM4	A3A8	031	?NCXQ	
GAMM4	A3A9	060	$\rightarrow 180 \mathrm{C}$	[AD2-13]
GAMM4	A3AA	044	CLRF 4	
GAMM4	A3AB	035	?NCXQ	
GAMM4	A3AC	068	$\rightarrow 1$ AOD	[EXP13]
GAMM 5	A3AD	138	READ 4(L)	restore 13-digit partial result
GAMM5	A3AE	158	$M=C A L L$	M has sign and exp
GAMM5	A3AF	OBO	C=N ALL	C has 13 digit mantissa
GAMM5	A3B0	149	?NC GO	
GAMM5	A3B1	062	->1852	[MP2-13]

That's all folks; hope this journey through the archeological SW department has been interesting to you all.

THE END.

