Ms

M1 M2 M3 M4 M5 Me M7 M8 M9 MI1O

HP41 13-digit OS Routines. Scratching the surface...

HP41 OS 13-digit Math Routines.

Scratching the surface 30 years later.

X5

AP |

becomes:

=

K5

AP

M1 M2 M3 M4 M5 Me ™MFP O OME M MO MI11 MI12 M13

Angel M. Martin.
February 2011

Angel Martin Page 1

3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

This compilation, revision A.1.5

Copyright © 2010-2011 Angel M. Martin

Published under the GNU software license agreement.

Angel Martin Page 2 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

13-digit Math Routines within the 41 OS.

Intro.

The purpose of this mini-paper is to document the usage of some of the 13-digit math
routines within the 41 OS — for extended precision in the calculations of functions in
the SandMath and the 41Z modules. It’s not a comprehensive description of the
routines, nor should it be seen as a complete overview of the 41 Math Rom (system
ROM_1), which — I'm glad to say — still holds many secret chestnuts and
undocumented treasures.

It’s assumed that the reader is familiar with the “standard|” math routines in the OS,
such as [AD2_10], [MP2_10], [LN10], etc. I’ll make no attempt to explain those
anything beyond a comparison point with the extended ones.

I’m not a computer science engineer; so pls. allow some imprecise rigor or unclear
use of terms within the descriptions below — you’ve been warned!

The basics: Nibbles and digits.

The NUT CPU - a 30-year old classic by today’s standards — uses 7-byte registers as
main memory unit. Each byte has two nibbles, each nibble being 4 bits - which makes
it a 56-bit CPU, if that means anything these days.

Nibbles (or digits) are labeled from right to left as 0 to 13, with nibble 0 holding the
LSB. The typical assignment distribution of those fields is as follows:

e nibble 13 holds the sign of the mantissa, called the MS field. A zero denotes
positive numbers, and 9 a negative number

e nibbles 12 to 3 hold the mantissa, called the M field and ranging from 0 to
9999999999

e nibble 3 holds the sign of the exponent, called the XS field - with zero
positive and 9 negative exp.

e nibbles 1 and O (that is: byte 0) hold the exponent, called the XP field -
ranging from 0 to 99. The combination of nibbles 2 to 0 is also called the S&X
field.

Typically a number in the calculator is held in a single register, thus its precision is
limited to 10 digits. This was good enough for 1980 standards for calculator design,
but as algorithms get more complicated the numerical errors become more significant,
rendering the system sub-optimal.

Angel Martin Page 3 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Yet the 41 OS math routines (in ROM1) were written with extended precision in
mind. They employ two CPU registers to hold the numbers, extending the actual
precision to 13 digits, as follows:

e first register holds MS and the S&X,
e second register holds a 13-digit mantissa.

From this it’s clear that the routines should then operate taking a dual-register
definition for each one of the input arguments (one if MONADIC and two if DUAL),
and conversely should exit leaving the final result in two registers as well.

But in fact, they’re even better than that.

Considering that the initial input data and the final output result can only have a 10-
digit form, those routines must also accept 10-digit inputs, and must produce 10-digit
outputs. No surprisingly they are indeed designed to accept input on either way, and
to output the results in both ways. There’s even a third hybrid form, with one operand
in 13-digit form and another in 10-digit form.

This allows intermediate operations to be done with 13-bit precision, which is good
enough to achieve a 10-digit accuracy, without rounding errors or loss of resolution.

The important think to realize is that there is only ONE set of math routines, and not
dual sets. The routines always operate on a dual-mode basis, and exit with dual
results placed in both 10-digit form [in register C], and 13-digit form [in arithmetic
registers A&B].

Different entry points within the routines determine whether it’s using the extended
precision or not, just truncating the input values to 10-digit forms. So even the
standard [AD2_10] routine produces a 13-digit output in registers A&B, even though
most of the time this isn’t taken advantage of and only the result placed in C is used.

So from now on we won’t refer to either 10-digit or 13-digit routines anymore, as
there’s only one set — with a choice of manners to use them, depending on the syntax
(entry points) and the richness of the data.

This also means the execution time is not longer when the 13-digit forms are used,
thus there’s no penalty in using them!

And besides that, to make things even more attractive, the code listings get simplified
if the extended precision syntax is used — due to the way the routines have been
written, and to the auxiliary routines used to facilitate repeated operations. So
typically programs are shorter, saving vital bytes.

Those three reasons are surely good enough to justify the learning curve, won’t you
agree? So let’s get to it, shall we...

Angel Martin Page 4 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Entry points and digit forms.

Clever as they were, the 41 OS programmers followed a nomenclature system to
consistently label the different entry points for all routines in a common way,
denoting the data form convention to use.

So a dual 10-digit form always uses the “2-10" string in their names, and the dual 13-
digit form uses “2-13” — whereas the one-of-each hybrid uses “1-10” as descriptor.
All perfectly clear, and very helpful to get your bearings when navigating the
MCODE listings.

Let’s first review what we already knew:-

e A single 10-digit input for MONADIC functions is expected to be in Register
C. This of course notwithstanding additional requirements, like also being in
register N (as it’s done with [XFCT100],

e A dual 10-digit input for DUAL functions is expected to be in registers A for
the first operand, and register C for the second. Ditto here w.r.t. additional
requirements, like also using X/Y (like in [TOPOL] - this one probably the
most complex routine in the OS alone!)

And here’s the extension to the knowledge:

e A single 13-digit input for MONADIC functions is expected to be in the
arithmetic registers A&B, as per the 13-digit convention explained before.
Examples are: [LN13], [SQR13], [EXP13].

e A dual 13-digit input for DUAL functions is expected to be in registers A&B
for the first operand, and registers C&M for the second one. The order is
especially important for the division routine, of course. Examples are [AD2-
13], [MP2-13] and [DV2-13] & [X/Y13] (its reverse).

e A hybrid 10- and 13-digit input for DUAL functions is expected to be in
registers A&B for the first operand (13-digit form following the extended
convention), and in register C for the second operand (10-digit form following
the standard convention). Examples are [AD1-10], [MP1-10] and [DV1-10].

Note that there aren’t entry points for the reverse situation — operand 1 must be the
13-digit form

But wait, there’s more. To further facilitate interoperability within all these routines,
there are auxiliary ones that make the chain calculations almost as simple as if we
were using an RPN stack. They are:

e [STSCR].- A routine to temporarily store a 13-digit result for later reuse, using
scratch registers “Q” &”+” — using a slightly modified convention due to the
compromised usage of the “+” register. (Now we know why Q can’t be used
in our MCODE so often!)

Angel Martin Page 5 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

e [RCSCR].- Its trusty companion, a routine to restore the scratch registers into
registers {C&M}, so their content can be used as second operand by a DUAL
function. (It takes care of the subtleties used in [STSCR] to reverse the
convention in compatible way).

e [EXSCR].- The third one. A routine to exchange (swap) the contents of
registers {A&B} with the scratch registers. Nothing like the versatility of a
swap sometimes! Very useful in hybrid operations (10-digit & 13-digit).

STSCR
A [ms, sax —'
B M < >
EXSCR Q MS, S&X
+ I
C [Ms, S&ax RCSCR |
M M <

e [ADDONE], [SUBONE].- handy routines to add/subtract one (written ad-hoc
in C) to/from the number held in registers {A&B}, leaving the result also in
{A&B}. (Guess which native functions used these? Here’s a hint: LNX+1 and
EAX-1).

e [P1/2].- There’s never enough number of decimal digits for an irrational
number, won’t you say? This routine gives 13 of them, and it’s broadly used
all along the Math ROM. Also note that it’s placed in {C&M}, ready to be
used as 13-digit second operand for addition, division, or multiplication steps.

e [LNC10], [LNC20], [LNC30], [LNC40], [LNC50], etc. As their names imply,
routines to input the different values of the decimal log for those relevant
values. (I’m a bit fuzzy here as | haven’t really studied them all).

e [RTOD] and [DTOR].- Radians-to-Degrees and Degrees-to-Radians
conversions. The result is also given in dual form, 13-digit in {A&B} plus 10-
digitin C.

e [SQR13] .- 13-digit entry for the Square root routine. This is to be used with
caution, as it doesn’t always return correct results in chain calculations. If the
mantissa result is zero, and it’s to be followed by [ADD1-10] or [ADD2-13]
then the mantissa sign field in B must be cleared prior to the addition step (as
discovered by Jean-Marc Baillard).

e [TRGSET] and its multiple variants as per the flag settings, such as:
- CFO,CF1=][SIN];-CFO0,SF1 =[COS]; -SF0,SF1 =[TAN]
This is an interesting case, which may have an implementation defect or
simply wasn’t supposed to be used as intermediate step in calculations. The
result is given in dual form as well, but the mantissa sign of the 13-digit form
is not always correct — thus it’s necessary to use A=C MS if the 13-digit form
is to be used in subsequent calculations.

Angel Martin Page 6 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Let’s see some examples of how to use these handy routines, comparing the syntax
and code reduction as things get more powerful:-

Example 1.- Adding X and Z.

No frills here: each input is a 10-digit form so our old-reliable routines do the work —
and there’s no additional value in using the 13-digit syntax, as we can’t possibly
“guess” the three missing digits!

READ 1(2)
A=C ALL
READ 3(X)
[AD2-10]

Example 2. Calculate (X+2)*Y

Here’s a good chance to compare the * standard” vs. the “extended” syntax:

READ 1(2) READ 1(2)

A=C ALL A=C ALL

READ 3(X) READ 3(X)

[AD2-10] [AD2-10] -so far so good, but watch:
A=C ALL READ 2(Y) -uh? No need to obliterate A
READ 2(Y) [MP1-10] - an elegant way to finish.
[MP2-10]

Note how we didn’t need to save the intermediate result as 10-digit form into A, as it
was ALREADY saved into A&B in 13-digit form. (so saving it would’ve destroyed
it). Note also we saved one line whist gaining precision — a great deal.

Example 3. Calculate (X+2)*(Y+T)

C=0 S&X C=0 S&X - only way to read the T register
RAMSLCT RAMSLCT - select bottom of chip0
READATA READATA - get first operand to C

A=C ALL A=C ALL -save itin A

READ 2(Y) READ 2(Y) - so far so good, but watch:
[AD2-10] [AD2-10] - first intermediate result:

N=C [STSCR] - saved in scratch

READ 1(2) READ 1(2)

A=C ALL A=C ALL

READ 3(X) READ 3(X)

[AD2-10] [AD2-10] - second intermediate result
A=C ALL [RCSCR] - the trusty companion

C=N [MP2-13] - full dual 13-digit glory at last
[MP2-10]

Angel Martin Page 7 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

In all fairness there’s not such a code reduction here since the calls to [STSCR] and
[RCSCR] required two bytes, whereas using N as scratch register is a single byte each
way. Nevertheless the code clarity and enhanced accuracy are always there.

Example 4. Calculate Ln(X)+Y

This one also benefits from the extended entry points syntax, as follows:

READ 3(X) READ 3(X) - getoperandtoC

CLRF5 CLRF5 - flag the proper logarithm to use
[LN10] [LN10] - result in both 10 & 13-digit forms
A=C ALL READ 2(Y) - getsecond operand to C

READ 2(Y) [AD1-10] - hybrid multiplication to end
[AD2-10]

Example 5. Calculate SOR(X"2+Y/2) - (a.k.a the module.)

READ 3(X) READ 3(X) - get first operand to C

A=C ALL A=C ALL - duplicate in A

[MP2-10] [MP2-10] - square power in both 10/13-digit forms
N=C [STSCR] - 13-digit form saved in scratch
READ 2(Y) READ 2(Y) - getsecond operand to C

A=C ALL A=C ALL - duplicate in A

[MP2-10] [MP2-10] - result in both 10/13-digit forms
A=C ALL [RCSCR] - recall first partial result to C&M
C=N [AD2-13] - all-13-digit addition to end
[AD2-10] [SQR13]

[SQR10]

Examples 6 & 7.- Calculate (X~3)+1 and (1/X"2) -1

Now without the corresponding comparisons, to expedite the illustration.-

a) Adding one b) Subtracting one
READ 3(X) READ 3(X)

A=C ALL A=C ALL
[MP2-10] [MP2-10]

READ 3(X) [ON/X13]
[MP1-10] [SUBONE]
[ADDONE]

The cube power is good example of combining the dual result into a chain calculation,
in this case a hybrid product: economy of steps and calculation efficiency in one!

Angel Martin Page 8 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Example 8.- A couple of tricks to impress your friends.

Calculate 1/X”2, and divide a 10-digit number in N by its value (i.e. the reciprocal to
[DV1-10)).

The first part is easy, let’s do it in two different ways::

a) The sub-optimal way b) the full-resolution way
READ 3(X) READ 3(X)
[ON/X10] [ON/X10]
[MP1-10] [STSCR]
[RCSCR]
[MP2-13]

In the shorter implementation (on the left) we take advantage of the fact that the
output from the [1/X] routine is dual, as 13-digit form in A&B and also as a 10-digit
form in C. It’s shorter but of course doesn’t utilize the full information available and
therefore the longer implementation (on the right) is recommended. If space is at a
premium (as it eventually always is), the sub-optimal implementation is still better
than a dual 10-digit one — which also takes man extra code line.

The second part is a little trickier. Since there isn’t an entry point to reflect this kind
of hybrid scenario, we’ll upgrade the 10-digit value into a “fake”13-digit one in order
to use the dual 13-digit division entry point, as follows:

[STSCR] - saves A&B in scratch

C=N - puts the 10-digit value to C

A=C ALL - puts its sign and X&S in A

B=0 ALL - a precaution to clear unused fields

C<>BM - puts the 10-digit mantissa in B

[EXSCR] - swaps the “fake” upgraded value and the genuine one
[RCSCR] - places the fake value into M&C

[DV2-13] - performs the division our way: {A,B} over {M,C}

Note that the last three steps can be replaced by this simplified way:

[RCSCR] - brings {Q,+} to {M,C}
[X/Y13] - divides {M,C} by {A,B} instead!
MS | M1 M2 M3 M4 M5 M6 M7 M8 M9 MI10| XS XP |

becomes:

Ms XS5 XP

M1 M2 M M4 M5 MEe MY O ME M9 MO MI1I1 O M12 M13

Angel Martin Page 9 3/1/2011

Example 9- Get the gloves off and calculate PROD [X+k], for k=1,2...6

HP41 13-digit OS Routines. Scratching the surface...

Now in a more realistic vein, we’ll approach this one using a more detailed listing

description as follows:

Highlights here are the usage of [EXSCR] and the initial conversion of the input value
to a “fake” 13-digit form, so that the same syntax could be used inside of the

multiplication loop.

OF8 READ 3(X) xk___
10E A=CALL A holds sign and S&X
Q2B |B=0 ALL clears B

07A |A==B M B holds 1 3-digit mant
089 PNCXQ X

064 -=1522 [STSCH]

OE0D SLCTQ

15C PT=6 loop counter

0aA8 PNCXQ i

064 -=1524 [EXSCR]

0AQ0 |SLCTPR

001 PNCXQ X+h+1

060 -=1800 [ADDONET

A8 PNCXQ partial product

064 -=1524 [EXSCR]

oDt PNC XQ X+h+1

064 -=1534 IRCSCH]

149 7NC XQ PP * (x+k+1)

060 -=1852 MP2-13]

OE0D SLCTQ

D4 | PT=PT-1 loop & times

384 PT=10

393 |JNC -14d

089 PNCXQ PROD{x+k) |k=0,1..6
064 -=1522 [STSCH]

The result of the loop is in 13-digit form, and therefore it’s ready for further chain

calculations as need may be.

Note that pointer P is used by both [ADDONE] and [MP2-13], thus we need to use Q

instead for the loop counter.

ADDOME

SUBONE

Angel Martin

——

Page 10

+ (0

=|w

= |

0]

5

-2

3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Example 10.- Calculate 2X + 1168,92649479

Notice of course that there are 12 digits in all required defining the value to add,;
therefore we’ll have to use a dual 13-digit form addition. All we need is converting
the given number to a proper 13-digit form in order to be able to use all its 12 digits in
the adding operation.

This entails not only writing its mantissa in C, but also its sign and S&X into the M

register to have a whole-defined value. Also let’s not forget clearing the unused
values in either register to avoid sporadic errors, so difficult to troubleshoot.

OF3 |READ 3(X)

10E_ A=CALL

010 PNC XGQ Adds normalized
060 -=1807 [AD2_ 107

04E |C=0ALL

130 LDIS&X S&Xin M

031 PNC X
080 -=180C [AD2-13]
Mms | M1 M2 M3 M4 M5 Me M7 M3 | M9 MI10 [XS XP |

becomes:

Ms x5 XP

M1 M2 M3 M4 M5 Me MFP O OME M MIO M11 M12 M13

Angel Martin Page 11 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Example 11.- Pi in the (13-digit) sky.

Working with 7 has two variants, depending on whether it’s used as first or second
operand. Remember that [P1/2] writes a 13-digit version of x into the C&M registers,
S0 it’s ready as a second argument but requires some work it it’s to be used as first:-

For instance, to calculate the square root of 2z

0DE A=0 ALL -4—

269 7NCXQ

064 -=1994 [Pzl
1EE |C=C+C ALL

1EE |C=C+C ALL 2pi

O0EE B==C ALL

305 ?NCXQ

060 -=18C1 [SQR13]

Returned to both {A,B} (13-digit form) and C (10-digit form).

And to divide a 13-digit form number in {A,B} by 7

2688 PNCXQ

04 -=15584 Il 4]

1EE C=C+CALL oi

273 PNCXQ L WLn(Y)
0E0 -=18480 [DV2-13]

The 10-digit form of xis obtained by rounding the mantissa to just 10 digits, and by
truncating the S&X field after the execution of [P1/2], as can be seen below in the
well-known steps of the Coconut OS:

Header 1240 '089 g
Header 1241 010 "p"
[PI 1242 2A0 SETDEC
1243 [269 ?NC XQ
1244 064 ->199A [P1/2]
1245 1EE C=C+C ALL
1246 23A C=C+1 M rounding?
1247 046 C=0 S&X truncation to 10-digit
LXEX f1229 OEE B<>C ALL
RCL 122E 18C ?FSET 11
122F [3B5 ?CXQ
M230 (051 ->14ED [RASUB]
[HPRCL 1231 |04E C=0 ALL
1232 270 RAMSLCT
1233 OEE B<>C ALL
1234 'OE8 WRIT 3(X)
NFRPRL 1235 [3B9 ?NC GO
1236 [002 ->00EE [NFRPR]
Angel Martin Page 12 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

A real-life example: Hyperbolic functions at last.

Yes there are many unanswered questions in the universe, but certainly one of them is
why, oh why, didn’t HP-MotherGoose provide a decent set of hyperbolic functions in
the (otherwise pathetic) MATH-PAC, and worse yet -adding insult to injury- how
come that error wasn’t corrected in the Advantage ROM?

For sure we’ll never know, so it’s about time we move on and get on with our lives —
whilst correcting this forever and ever. The first incarnation of these functions came
in the AECROM module; | believe programmed by Nelson C. Crowle, a real genius
behind such ground-breaking module - but it was also somehow limited to 10-digit

precision.

Here they are in all their 13-digit splendor at last.-

First the inverse functions, using the logarithm and square root routines.

Header ADa4 OBE "NT

Header Apgs gos Tt

Header ADBE a13 "s" Lnfx+sqgrx*2+1)]

Header Apsd o001 CAT

Header ADaa a0 "H" A ngel Martin

ASINH ADB9 248 SETF9

ASINH ADBA 03B JNC+07 —

Header ADBB 033 "S¢

Header Apsc 0oF tO"

Header AoahD o0z "Ct Lnfx+sqgrx*2-1)]

Header ADBE 001 AT

Header ADBF a0 "H" A ngel Martin

ACOSH AD90 244 CLRF9

ACOSH ADGA OF3 READ 3(X) -—

ACOSH AD9Z 1361 PNCXQ (this includes SETDEC)
ACOSH AD93 1050 -=14D8 [CHE_NO S
ACOSH AD94 3C4 ST=0 in caze itz called by XEQAX
ACOSH AD9s 10E A=CALL

ACOSH AD9E 135 ?NCXQ P

ACOSH AD9T 1080 -=184D ez 107

ACOSH ADga 24C YFSETA

ACOSH AD99 1007 PCXQ

ACOSH AD9A 10617 -=1800 [ADDONE]

ACOSH AD9B 24C YFSETA

ACOSH ADAC 1008 PANCXQ

ACOSH ADaD 1080 -=1802 [SUBOME]

ACOSH ADIE 1305 PNCXQ

ACOSH ADIF 1080 -=18C1 [EQR13]

ACOSH ADAD OF8 READ 3(X)

ACOSH ADAT 025 ?NCXQ

ACOSH ADAZ 10680 -=1805 [AD1_107

ACOSH ADAZ 121 NC XQ

ACOSH ADA4 10BC -=1B48 LN13]

ACOSH ADAR 1331 PNC GO Overflow, DropST, FillXL & Exit
ACOSH ADAGE 1002 -=00CC [MERXT

Angel Martin

Page 13

3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Header ADAT OBE °NT

Header ADAZ 001 mAT

Header ADA9 014 °TT 1/2[In{1+x) - In{1-x)]
Header ADAA 001 TAT

Header ADAB 008 "H" A ngel Martin
ATANH ADAC OF8 READ 3(X)

ATAMH ADAD 1361 PNCXQ (this includes SETDEC)
ATAMH ADAE 1050 -=14D8 [CHE_NO 5]
ATAMH ADAF 3C4 5T=0 in caze its called by XEQAX
ATAMH ADBO HICD PNCXQ Lnfx+1}

ATAMH ADB1 108C -=1B732 KM +XT

ATAMH ADBZ 1085 PNCXQ Lnfx+1}

ATAMH ADBZ 1084 =022 [STSCRT

ATAMH ADB4 OF8 READ 3(X)

ATAMH ADBS BE

ATAMH ADBG _:_: =

ATAMH L0BT (38

ATAMH L0BE 14 LT

ATAMH ADBE 104D PNCXQ 1-x

ATAMH ADBA 1080 -=1807 JAD2 107

ATAMH ADBB |3C4 | ST=0

ATAMH ADBC 421 ?NCXQ Lrff-x)

ATAMH ADBD {0BC -=1B48 LN13]

ATAMH ADBE 2BE C=-C-1MS5 Sign change
ATAMH ADBF 11E A=CMS -Lrf1-x)

ATAMH ADCO 10Df PNCXQ Lrfx+1)

ATAMH ADCH 1084 -=1834 [RCSCH]

ATAMH ADCZ2

ATAMH ADC3 [AD2-13]

ATAMH ADC4

ATAMH ADCH

ATAMH ADCE

ATAMH ADCT

ATAMH ADCE [OV41-101

ATAMH ADCAH Overflow, DropST, FillXL & Exit
ATAMH ADCAD 1002 -=00CC [MERXT

We could’ve used a “fake” 13-digit format for X to have access to [ADDONE] and

[SUBONE], but that wouldn’t have added any more precision to the result.

Instead we used the [LN1+X] routine, which internally does the same thing anyway.

And of course we’ll utilize its 13-digit output!

On the other hand, we use the scratch registers to store the partial result Ln(1+x), so

that it’ll be fully used as 13-digit value in the final subtraction step.

arsinhz = In (:1: + va? + 1)
arcoshz = In (:1: + Va? — 1) x> 1

artanhxz = = In

Angel Martin

1
2

14+=x
1 —=x

x| <1

Page 14

And here are the direct functions, a festival of exponential routines for you:-

HP41 13-digit OS Routines. Scratching the surface...

Header AOCB 0BE "NT

Header ADCC 009 " shix)=1/2[e x-a%.x]
Header ADCD 013 &5

Header AODCE 003 "H" A ngel Martin

SINH ADCF 148 SETF G

SIMH ADDD 033 JUNC+06 —

Header ADD1 093 &5

Header ADDZ 0O0F "o" chix)=1/2[e*x+etx]
Header ADD3 003 "CT

Header ADD4 003 "H" A ngel Martin

CO5H AODDS 144 CLRFA

COsH AODE 188 SETF 11 -+ Go noisy!

COsH ADDT OF8 READ 3(X)

COsH ADDE OEE B==CALL

SHYP AODS OEE B==CALL subroutine use
SHYF ADDA 13671 PNC XQ (this includes SETDEC)
SHYF ADDB 1050 -=14D8 [CHE_NO 5T

SHYF ADDC 044 (CLRF 4

SHYF ADDD 1029 PARNC XQ

SHYF AODE 1068 -=1A04 [EXFP10]

SHYF AODDF 1089 ?NC XQ ehy

SHYF ADED 1084 -=1822 [STSCRI

SHYF ADET 239 FNCXQ gh-y

SHYF ADEZ2 1060 -=188E [OM13

SHYF AOE3 14C ?FSETA true if SINH

SHYF ADE4 (013 | JNC+02 T]

SHYF AOER Z2BE C=-C-1M3 Sign change

SHYF AOEGE 11E A=C M3 £— ditto in A

SHYF ADET 10D1 PANC XQ ehy

SHYF AODES 1064 -=1834 [RCSCH]

SHYF ADES

SHYF AOEA

SHYF AOEB

SHYF ADEC

SHYF ADED

SHYF AOEE

SHYF AOEF [DV1-101

SHYP ADFD 18C PFSET 11 subroutine mode?
SHYF AOF1 3A0 fNCRINW
SHYF AOF2 331 *NC GO Overflow, DropST, FillXL & Exit
SHYP AOF3 a0z -=00CC [NFRXT

Here the usage of a subroutine and CPU flag 11 is due to the fact that the LogGamma
function (elsewhere in the SandMath) requires calculating the hyperbolic sine as
intermediate step, otherwise it could have a shorter listing, and without using register
B either.
2r

. e’ — € N e —1

- - - — - ' tanhax = ———
sinh x 5 cosh 5 2 4 1
Note also the common ending in these, suitable to yet further space savings just by
using a JNC call to the appropriate section. We have however left it like that for
clarity.

Angel Martin Page 15 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Header ADOF4 OBE °NT

Header ADFS 001 AT thix)}=fe"2x-1]Te"2x+1]
Header ADOFE 014 "T"

Header ADFT a0 "HT A ngel Martin

TANH AOF8 OF8 READ 3(X)

TAMH ADFD 1361 PNCXQ (this includes SETDEC)
TAMH AOFA 1050 -=14D8& [CHE._NO 5]

TAMH AOFB 10E A=CALL

TAMH ADFC 104D ?PNCXQ 2x

TAMH AOFD 1080 -=1807 [ADZ2 107

TAMH AOFE 044 CLRF4

TAMH ADFF 1035 ?NCXQ e’2x

TAMH A100 1088 -=1A0D [EXP13]

TAMNH A101 088 PNCXQ

TAMH A102 1084 -=1822 [STSCR]

TAMH A103 1004 PNCXQ e’2x+1

TAMH A104 1080 -=1800 [ADDONE]

TAMH A105 1048 PNC XQ

TAMH A106 1084 -=1824 [EXSCH]

TAMH A107 1008 PNCXQ e’2x-1

TAMH A108 1080 -=1802 [SUBONE]

TAMH A109 1O0DY PNCXQ e’2x+1

TAMH A10A 1084 -=1834 [RCSCH]

TAMH A10B {1275 ?NCXQ [e™2x-1]/ [er2x+1]
TAMH A10C {080 -=188D [DV2-13]

TAMH A10D 1331 PNC GO Overflow, DropST, FillXL & Exit
TAMH AM0E 1002 -=00CC [MERXT

(*) Thanks to Thomas Klemm for pointing out a shorter way to calculate TANH using
the scratch registers to store the exponential value.

Go ahead and set your machine in FIX 9, and bang the keyboard with esoteric inputs
until you get blue in the face — do you find rounding errors somewhere?© - Hint: use
www.wolframalpha.com as reference.

Angel Martin Page 16 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Putting it all together — Gamma for x>0 as a 13-digit function.

Just to go with a bang, here’s an example that consolidates many of the tips & tricks
seen before. We’ll now write a routine to calculate the Gamma function of positive
real numbers. We’ll use the Lanczos approximation with 12-digit coefficients, as
follows:

W= | 75122.633153(

.= | 80916.6278957

> g,z @= | 36308.2951477

[(z) = % (z +5.5f* g5 = | 8687.24529705
I:[NZ " = | 1168.9264947¢

k= | 83.8676043424

G = 25066287

Our function should give exact integer results for the natural numbers, since it’s well-
known that T'(x) = (x-1)!. And here’s the source code for such a feat:

Header AZBZ2 081 "A"

Header AZB3 QoD "MT Gammalx) by Lanczos
Header AZB4 Q0D "MT x<71, and #-n

Header AZBS 001 TAT

Header AZBE 007 "G" ;iﬁgef Martin

GAMMA AZBT 2CC PFSET13 Skip if running pront
GAMMA AZBB 027 JC+04 —

GAMMA A2B9 13B5 PORTDEF: Displays "Running..." message
GAMMA AZBA 10BC XQ

GAMMA AZBB 133B -=AF3ZE [SUMMINGT

GAMMA AZBC 1375 PORTDEF 44— Calculates Gamma
GAMMA AZBD 103C XQ needs argument in X
GAMMA AZBE 1201 -=A201 [GAMMAT

GAMMA AZBF 1331 PNC GO Overflow, DropST, FillXL & Exit
GAMMA AZCO w002 -=00CC [MNERX]

GANMMA A2C1 OF8 READ 3(X)

GAMMA AZCZ2 1381 FNCXQ {includes SETDEC)
GAMMA AZC3 1050 -=14D8 [CHK_NQ ST

GAMMA AZC4 ZEE PCROALL single-case zer
GAMMA AZCE 0BB UNC+11d —

GAMMA AZCEH

GAMMA AZCT

GAMMA AZCE

GAMMA AZCAH

GAMMA AZTA

GAMMA AZCH

GAMMA AZCC

GAMMA AZCD

GAMMA AZCE [AD2 107

GAMMA AZCF 2FE |?CHOMS Set Carry if Negative
GAMMA AZDO 1285 FNC GO - "Out of Range"

GAMMA AZDT 1002 -=0042 [ERROF]
Angel Martin Page 17 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

The function uses a subroutine because gamma is also used in the Bessel functions
code — implemented all in MCODE in the SandMath Module for integer and real
orders, but as they say, that’s another story...

We start by making sure we’ll be within the 41 numeric range. Since we know that
factorials for numbers greater than 69 will exceed it, we impose the restriction that x
must be less than 71. Nevertheless there’s also a final overflow check at the very end.

Then we take on the product loop as seen in example #9 before. Note the handy
utilization of the scratch registers routines, as well as the “fake” upgrade of x to a 13-
digit form for convenience sake.

GANMMA1 A2D2 OFE8 READ 3(X) <
GAMIMA AZD3 !fr:'E A=CALL A holds sign and S&X |
GAMIMA AZD4 102E B=0 ALL clears B |
GAMIMA AZD5 [07A |A<=B M B holds 1 3-digit mant |
GAMIMA AZDE 1085 PNCXQ X

GAMIMA AZDT 1084 -=1522 [STSCR]

GAMIMA AZDE OED SLCTQ

GAMMA A2Da (156C PT=6 loop counter

GAMIMA AZDA 1045 PNCXQ K

GAMIMA AZDB 1084 -=1524 [EXSCR]

GAMIMA AZDC 0AD |SLCTP

GAMIMA AZDD 1004 PNCXQ x+f+o

GAMIMA AZDE 1080 -=1800 [ADDONE]

GAMIMA AZDF 1045 PNCXQ partial product

GAMIMA AZED 1084 -=1524 [EXSCR]

GAMIMA AZET 10D1 PNCXQ x+f+o

GAMIMA AZEZ 1084 -=1534 [RCECR]

GAMIMA AZE3 1148 PNCXQ PP * (x+k+1)

GAMIMA AZE4 1080 -=1832 MP2-13]

GAMIMA AZES OED SLCTQ

GAMIMA AZEGE 3D4 PT=PT-1 loop 6 times

GAMIMA AZET 384 PPT=0

GAMIMA AZEB 393 |JNC-14d

GAMIMA AZED 1085 PNCXQ PROD{x+k) |k=0,1..6

GAMMA AZEA 1084 -=1522 [STSCR]

Note also that we save the partial result in the scratch registers for later use.

Next comes the long but simple polynomial term, written using Honer’s method to
take advantage of its efficiency. Also partially seen in example #10, here’s where we
use registers C&M for the coefficients, as second operands for the multiplication. This
is done to use all digits up, for extended precision in the calculations.

At the end of this we’ll divide the partial result by the result from the productory loop,
using the scratch registers again.

Angel Martin Page 18 3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

GAMM?2 AZEB OF8 READ 3{X) X
GAMMZ AZEC

GAMMZ AZED

GAMMZ AZEE

GAMMZ AZEF

GAMMZ AZFD

GAMMZ A2F

GAMMZ AJF2

GAMMZ A2F3

GAMMZ AZF4

GAMMZ AZFR

GAMMZ ADFE

GAMMZ A2FT

GAMMZ ADFE]

GAMMZ AZFD 6™

GAMMZ AIFA ME2_ 1G]

GAMMZ AZFB

GAMMZ AZFC S&Xin M

GAMMZ AZFD

GAMMZ AIFE

GAMMZ AIFF

GAMMZ A300

GAMMZ A301

GAMMZ A302

GAMMZ A303

GAMMZ A304

GAMMZ A305

GAMMZ A306

GAMMZ A307

GAMMZ A308 10D

GAMMZ A309 |EEE

GAMMZ A30A (096

GAMMZ A30B VEEELE B

GAMMZ A30C 1031 PNCXQ gE%+q5

GAMMZ A30D 0D -=180C [AD2-13]

GAMMZ A30E OFE |READ 3(X)

GAMMZ A30F 13D PNCXQ X 06*x+q5)

GAMMZ A310 1060 -=184F MP1_10]

GAMMZ 4311 [04E [C=0ALL |
GAMMZ 4312 (130 |LDIS&X S&Xin M |
GAMMZ A313 003 | CON:3 i
GAMMZ A314 1158 M=CALL i
GAMMZ A315 0¥ ' ;
GAMMZ A6 5 :
GAMMZ A31T |
GAMMZ A318 !
GAMM2 A319 !
GAMMZ A31A 1
GAMMZ A31B i
GANMM2 A3IC i
GAMMZ A31D ;
GAMMZ A3IE :
GAMMZ A31F]
GAMMZ A320 |
GAMMZ A321 !
GAMMZ A322 it
GAMMZ A323

GAMMZ A324 1060 -=180C [AD2-13]

Angel Martin Page 19

3/1/2011

GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ
GAMMZ

Yes this is long, but stick around a little longer, the best is yet to come...

A325
A326
A3ZT
A28
A329
AJ2A
A32B
A32c
A32D
A3ZE
A32F
A330
A331
A332
A333
A334
A335
A336
A33T
A338
A339
A33A
A33B
A33C
A33D
A33E
A33F
A340
A3
A342
A343
A3dd
A345
A346
AT
A48
A349
A34A
A34B
Aldc
A34D
AZ4E
A34F
A350
A351
A352
A353
A354
A355

HP41 13-digit OS Routines. Scratching the surface...

OF3 |READ 3(X)
13D PNCXQ Hgd+x*gbx+gal)
080 -=184F MP1_10]
[04E | C=0ALL I
(130 LDIS&X S&Xin M I
CON: 3 |

PNC XQ g3+x*gd+x*gEx+g3))
060 -=180C [AD2-13]
OF3 |READ 3(X)
13D PNCXQ g 3=xHgd+xTgEx+g3)))
080 -=184F MP1_10]
04E | C=0ALL
430 LDIS&x S&Xin M

3630829514
031 PNCXQ
060 -=180C [AD2-13]
OF3 |READ 3(X)
13D PNCXQ
080 -=184F MP1_10]

(after all programming is not always such an exciting ride).

Angel Martin

3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

GAMM2 A356 |04E |C=0ALL |
GAMM2 A357 1130 |LDIS&X S&Xin M !
GAMM2 A358 004 |CON:4 |
GAMM2 A359 158 M=CALL |
GAMM2 A3BA |O4E::CE0; :
GAMM2 A35B 13E

GAMM2 A35C

GAMM2 A35D

GAMM2 A35E

GAMM2 A35F

GAMM2 A3B0 18091 6,6278957

GAMM2 A361

GAMM2 A3B2

GAMM2 A363

GAMM2 A364

GAMM2 A3B5

GAMM2 A3B6

GAMM2 A3BT

GAMM2 A36S

GAMM2 A3RD

GAMM2 A3BA OFE |READ 3(X)

GAMM2 A3BB [13D FNCXQ

GAMM2 A3BC |0B0 -=184F MP1_10]

GAMM2 AJED 04E [C=DALL i
GAMM2 A3BE 130 |LDIS&X S&EX in M i
GAMM2 A3BF -
GAMMZ Az70 | !
GAMM2Z AT B
GAMM2 A372 :
GAMM2 A373

GAMM2 A374

GAMM2 A375

GAMM2 A3TB

GAMM2 A3TT I PE1226331

CAMMZ A378 H$

GAMM2 A379

GAMM2 A3TA

GAMM2 A37B

GAMM2 A3TC

GAMM2 A37D

GAMM2 A3TE SUM{gi*x™i)

GAMM2 A3TF [AD2-13]

GAMM3 A320 PROD{x+k) [k=0,1.6

GAMM3 4381 [RCSCR]

GAMM3 4382

GAMM3 4383 [Dv2-13]

GAMM3 4384 |0AE [A==C ALL Store 13-digit form:

GAMM3 A385 |128 | WRIT4(L) L holds sign and S&X

GAMM3 A3BB |0EE |C==BALL N holds 13-digit mant

GAMM3 A387 |070 (N=CALL SUM/ PROD

Angel Martin

Page 21

3/1/2011

HP41 13-digit OS Routines. Scratching the surface...

Lastly it comes the more involved phase, where we’ve used registers N and 4(L) as
temporary scratch as well, since Q & “+” are already taken. Note that we’re using the
exponential form of the power expression for simplicity:

(x+5,5)N(x+0.5)* exp[-(x+5.5)] = exp[(x+0,5)*Ln(x+5.5) — (x+5.5)]

GAMM4 A3BE OFE READ 3(X)

GAMM4 A3E8

GAMM4 A3BA

GAMM4 A3BB

GAMM4 A3BC

GAMM4 A3BD

GAMM4 A3BE [ADZ2_14]

GAMM4 A3BF x+0.35

GAMM4 A380 [STSCR]

GAMM4 A381

GAMM4 A382

GAMM4 A383

GAMM4 A384 x+3.3

GAMM4 A385 [AD1_14]

GAMM4 A386

GAMM4 A387T Ln{x+5.5)

GAMM4 A388 [LN13]

GAMM4 A388

GAMM4 A38A [RCSCH]

GAMM4 A38B (x+0. 51 Lnfx+5.5)
GAMM4 A38C MP2-13]

GAMM4 A38D x+0.35

GAMM4 A38E [EXSCRI

GAMM4 AZ8F 5
GAMM4 A3AD :
GAMMA A3A1
GAMM4 A3AZ

GAMM4 A3AZ [AD1_14]

GAMM4 A3Ad ZBE C=-C-1 M5

GAMM4 A3AS TME A=C M3 -(x+5.5)

GAMM4 AJAE 10D1 PNCXQ (x+0.5)*Lnfx+5.5)
GAMM4 AJAT 1084 -=1534 [RCSCH]

GAMM4 AJAB 1031 PNCXQ

GAMM4 A3AE 1080 -=180C [AD2-13]

GAMM4 A3AA 044 CLRF 4

GAMM4 A3AB 1035 PNCXQ

GAMM4 A3AC 1088 -=1A0D [EXP13]

GAMMS AJAD (138 |(READ 4(1) regtore 13-digit partial result
GAMMS AZAE 1598 M=CALL M has sign and exp
GAMME A3AF 10BO |C=NALL C has 13 digit mantissa
GAMME A3BO 11458 PNC GO

GAMME A3B1 1062 -=1832 MP2-13]

That’s all folks; hope this journey through the archeological SW department has been
interesting to you all.

THE END.

Angel Martin Page 22 3/1/2011

